Черчение для школьников
Поиск по сайту:
Черчение: чертежи и эскизы

Проекции треугольника, многоугольника и круга

С проекциями треугольника мы неоднократно встречались (см. рис. 91, 107, 110, 112). Для построения проекций треугольника мы может взять проекции трех произвольных точек, наблюдая лишь за тем, чтобы они не оказались лежащими на одной прямой линии. Построенные точки принимаем за вершины треугольника и соединяем их прямыми линиями (рис. 113, а). В случае надобности строим третью проекцию треугольника, его вид слева. Для этого правее основных проекций, в произвольном месте, проводим оси z23 и у1 (рис. 113, б). Через начало координат, точку O123, проводим постоянную прямую чертежа k123. Пользуясь горизонтальными и горизонтально-вертикальными линиями связи, строим профильные проекции А3, В3 и С3 точек А, В и С; полученные точки соединяем.
n
n
TBegin-->Проекции треугольника,  многоугольника и кругаTEnd-->
n

n
Перенос оси z23y1 вправо или влево перемещает третью проекцию А3В3С3 треугольника вправо или влево, однако не изменяет формы и размеров самой проекции. Перенос оси связан в данном случае с переносом профильной плоскости проекций П3. Подобный перенос возможен и для других плоскостей проекций. Покажем это на примере проецирования треугольника (рис. 114, а), Первоначально мы получили проекции λ2 и λ1 плоскости λ на плоскостях П2 и П1. Если мы переместим фронтальную плоскость проекций в положение П2, то мы получим новую фронтальную проекцию λ2 равную первоначальной проекции λ2; горизонтальная проекция λ1 для обоих положений фронтальной плоскости будет одна и та же. Таким образом, на комплексном чертеже (рис, 114, б) при новом положении оси проекций изменилось только расстояние между горизонтальной и фронтальной проекциями фигуры; форма проекций, их размеры и ориентация относительно осей проекций не изменились. Следовательно, оси проекций можно не изображать на комплексных чертежах; в большинстве случаев без них можно обойтись и тем самым упростить проекционные чертежи. Этой возможностью пользуются на заводах и в проектных организациях, где чертежи выполняются без осей проекций.
n
n
TBegin-->Проекции треугольника,  многоугольника и кругаTEnd-->
n

n
Для примера изобразим прямоугольник ABCD без осей проекций (рис. 115, а). Расстояние горизонтальной и профильной проекций от фронтальной проекции выберем произвольно. Встает вопрос о том, можно ли теперь «восстановить» положение осей, а следовательно, и плоскостей проекций. Для построения постоянной прямой чертежа (рис. 115, б) используем горизонтальную и профильную проекции любой точки, например точки А. Через точку А1 проведем горизонтальную линию связи, а через точку А3 — вертикальную линию связи. Проведенные прямые пересекутся между собой в точке А0, через которую проведем постоянную прямую k123 под углом 45 градусов к горизонтальной линии связи. Очевидно, что постоянная прямая будет единственной. Этого нельзя сказать о системе координатных плоскостей, которых может быть много. Действительно, одну из систем можно определить, приняв горизонтально-вертикальную линию связи за направление осей проекций x12 и z23. Точка A0 будет для этой системы началом координат O123. Плоскость прямоугольника будет прикасаться своей стороной AD к фронтальной плоскости проекции П2. Вторую систему можно получить, если провести координатные оси х'13 и z'23 через точку О'123, являющуюся точкой пересечения постоянной прямой с линией D2D3. В новой системе прямоугольник будет стоять на горизонтальной плоскости проекций П1, пересекаясь с ней по прямой DC. В промежутке между осями первых двух систем можно провести еще большое количество осей, которые определят новые системы плоскостей. Одну из таких систем определяют оси х212 и z223, пересекающиеся между собой в точке О1, являющейся началом координат третьей системы плоскостей. В последнем случае прямоугольник отстоит от всех трех плоскостей проекций.

Итак, найдя постоянную прямую чертежа, мы можем построить одну из возможных систем плоскостей проекций. Очевидно, что начало координат любой системы должно находиться на постоянной прямой чертежа. Отсюда следует, что постоянная прямая чертежа является геометрическим местом точек, фиксирующих начало координат всех возможных систем плоскостей проекций П2, П3.
n
n
TBegin-->Проекции треугольника,  многоугольника и кругаTEnd-->
n

n
При построении проекций четырехугольника общего положения нельзя взять четыре произвольные точки. Как только мы возьмем три точки, плоскость определится, и четвертую точку надо строить при условии, чтобы она принадлежала этой плоскости. Практически пользуются диагоналями проекций четырехугольника (рис. 115, в).

Фронтальную проекцию четырехугольника ABCD Рис. 116 строим произвольно; также произвольно строим горизонтальные проекции трех точек А1, В1 и С1 треугольника A1B1C1. Для построения горизонтальной проекции D1 точки D проводим фронтальные проекции А2С2 и D2B2 диагоналей четырехугольника.

Проекции диагоналей пересекутся между собой в точке Е2. Находим горизонтальную проекцию E2 этой точки на горизонтальной проекции А1С1 будущей диагонали АС; соединяем точки В1 и E1 и на продолжении этой линии находим точку D1 на вертикальной линии связи D2D1. При таком построении четырехугольник ABCD будет плоским. Пользуясь вспомогательными прямыми, пересекающимися со сторонами четырехугольника, можно построить проекции пятиугольника, шестиугольника и т. д.

Построим проекции правильного шестиугольника, вписанного в окружность, при горизонтальном их расположении (рис, 116, а). Построение начинаем с проведения окружности; затем вписываем в нее правильный шестиугольник А1В1C1D1E1F1.
n
n
TBegin-->Проекции треугольника,  многоугольника и кругаTEnd-->
n

n
Фронтальная проекция шестиугольника изобразится прямой горизонтально расположенной линией A2D2, точки B2F2 и С2Е2, принадлежащие этой линии, попарно совпадут.

В практике нередко приходится строить наклонно расположенные многоугольники, и особенно, окружности. Придадим плоскостям шестиугольника и круга наклонное положение, т. е. расположим их во фронтально-проецирующей плоскости т (рис. 116, б). При таком расположении плоскости прямые FB и ЕС шестиугольника и диаметр HG круга останутся фронтально-проецирующими прямыми и спроецируются на плоскость П1 в истинную величину. Наоборот, прямые ВС, AD и FE спроецируются с искажением, зависящим от величины угла наклона плоскости т. В связи с этим горизонтальная проекция шестиугольника не будет являться правильным шестиугольником, а горизонтальная проекция круга будет проецироваться эллипсом, большая ось которого H1G1, малая — A1D1


Аналитический портал Ua-News Главные новости Украины: политика, интернет, шоу-BIZ, спорт, столица.


2009-2016
Яндекс.Метрика